3.1577 \(\int \frac {\sqrt [3]{c+d x}}{(a+b x)^{4/3}} \, dx\)

Optimal. Leaf size=149 \[ -\frac {3 \sqrt [3]{d} \log \left (\frac {\sqrt [3]{d} \sqrt [3]{a+b x}}{\sqrt [3]{b} \sqrt [3]{c+d x}}-1\right )}{2 b^{4/3}}-\frac {\sqrt {3} \sqrt [3]{d} \tan ^{-1}\left (\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x}}{\sqrt {3} \sqrt [3]{b} \sqrt [3]{c+d x}}+\frac {1}{\sqrt {3}}\right )}{b^{4/3}}-\frac {3 \sqrt [3]{c+d x}}{b \sqrt [3]{a+b x}}-\frac {\sqrt [3]{d} \log (c+d x)}{2 b^{4/3}} \]

[Out]

-3*(d*x+c)^(1/3)/b/(b*x+a)^(1/3)-1/2*d^(1/3)*ln(d*x+c)/b^(4/3)-3/2*d^(1/3)*ln(-1+d^(1/3)*(b*x+a)^(1/3)/b^(1/3)
/(d*x+c)^(1/3))/b^(4/3)-d^(1/3)*arctan(1/3*3^(1/2)+2/3*d^(1/3)*(b*x+a)^(1/3)/b^(1/3)/(d*x+c)^(1/3)*3^(1/2))*3^
(1/2)/b^(4/3)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {47, 59} \[ -\frac {3 \sqrt [3]{d} \log \left (\frac {\sqrt [3]{d} \sqrt [3]{a+b x}}{\sqrt [3]{b} \sqrt [3]{c+d x}}-1\right )}{2 b^{4/3}}-\frac {\sqrt {3} \sqrt [3]{d} \tan ^{-1}\left (\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x}}{\sqrt {3} \sqrt [3]{b} \sqrt [3]{c+d x}}+\frac {1}{\sqrt {3}}\right )}{b^{4/3}}-\frac {3 \sqrt [3]{c+d x}}{b \sqrt [3]{a+b x}}-\frac {\sqrt [3]{d} \log (c+d x)}{2 b^{4/3}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(1/3)/(a + b*x)^(4/3),x]

[Out]

(-3*(c + d*x)^(1/3))/(b*(a + b*x)^(1/3)) - (Sqrt[3]*d^(1/3)*ArcTan[1/Sqrt[3] + (2*d^(1/3)*(a + b*x)^(1/3))/(Sq
rt[3]*b^(1/3)*(c + d*x)^(1/3))])/b^(4/3) - (d^(1/3)*Log[c + d*x])/(2*b^(4/3)) - (3*d^(1/3)*Log[-1 + (d^(1/3)*(
a + b*x)^(1/3))/(b^(1/3)*(c + d*x)^(1/3))])/(2*b^(4/3))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 59

Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[d/b, 3]}, -Simp[(Sqrt
[3]*q*ArcTan[(2*q*(a + b*x)^(1/3))/(Sqrt[3]*(c + d*x)^(1/3)) + 1/Sqrt[3]])/d, x] + (-Simp[(3*q*Log[(q*(a + b*x
)^(1/3))/(c + d*x)^(1/3) - 1])/(2*d), x] - Simp[(q*Log[c + d*x])/(2*d), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[
b*c - a*d, 0] && PosQ[d/b]

Rubi steps

\begin {align*} \int \frac {\sqrt [3]{c+d x}}{(a+b x)^{4/3}} \, dx &=-\frac {3 \sqrt [3]{c+d x}}{b \sqrt [3]{a+b x}}+\frac {d \int \frac {1}{\sqrt [3]{a+b x} (c+d x)^{2/3}} \, dx}{b}\\ &=-\frac {3 \sqrt [3]{c+d x}}{b \sqrt [3]{a+b x}}-\frac {\sqrt {3} \sqrt [3]{d} \tan ^{-1}\left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x}}{\sqrt {3} \sqrt [3]{b} \sqrt [3]{c+d x}}\right )}{b^{4/3}}-\frac {\sqrt [3]{d} \log (c+d x)}{2 b^{4/3}}-\frac {3 \sqrt [3]{d} \log \left (-1+\frac {\sqrt [3]{d} \sqrt [3]{a+b x}}{\sqrt [3]{b} \sqrt [3]{c+d x}}\right )}{2 b^{4/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 71, normalized size = 0.48 \[ -\frac {3 \sqrt [3]{c+d x} \, _2F_1\left (-\frac {1}{3},-\frac {1}{3};\frac {2}{3};\frac {d (a+b x)}{a d-b c}\right )}{b \sqrt [3]{a+b x} \sqrt [3]{\frac {b (c+d x)}{b c-a d}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(1/3)/(a + b*x)^(4/3),x]

[Out]

(-3*(c + d*x)^(1/3)*Hypergeometric2F1[-1/3, -1/3, 2/3, (d*(a + b*x))/(-(b*c) + a*d)])/(b*(a + b*x)^(1/3)*((b*(
c + d*x))/(b*c - a*d))^(1/3))

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 233, normalized size = 1.56 \[ -\frac {2 \, \sqrt {3} {\left (b x + a\right )} \left (-\frac {d}{b}\right )^{\frac {1}{3}} \arctan \left (\frac {2 \, \sqrt {3} {\left (b x + a\right )}^{\frac {2}{3}} {\left (d x + c\right )}^{\frac {1}{3}} b \left (-\frac {d}{b}\right )^{\frac {2}{3}} + \sqrt {3} {\left (b d x + a d\right )}}{3 \, {\left (b d x + a d\right )}}\right ) + {\left (b x + a\right )} \left (-\frac {d}{b}\right )^{\frac {1}{3}} \log \left (\frac {{\left (b x + a\right )} \left (-\frac {d}{b}\right )^{\frac {2}{3}} - {\left (b x + a\right )}^{\frac {2}{3}} {\left (d x + c\right )}^{\frac {1}{3}} \left (-\frac {d}{b}\right )^{\frac {1}{3}} + {\left (b x + a\right )}^{\frac {1}{3}} {\left (d x + c\right )}^{\frac {2}{3}}}{b x + a}\right ) - 2 \, {\left (b x + a\right )} \left (-\frac {d}{b}\right )^{\frac {1}{3}} \log \left (\frac {{\left (b x + a\right )} \left (-\frac {d}{b}\right )^{\frac {1}{3}} + {\left (b x + a\right )}^{\frac {2}{3}} {\left (d x + c\right )}^{\frac {1}{3}}}{b x + a}\right ) + 6 \, {\left (b x + a\right )}^{\frac {2}{3}} {\left (d x + c\right )}^{\frac {1}{3}}}{2 \, {\left (b^{2} x + a b\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(4/3),x, algorithm="fricas")

[Out]

-1/2*(2*sqrt(3)*(b*x + a)*(-d/b)^(1/3)*arctan(1/3*(2*sqrt(3)*(b*x + a)^(2/3)*(d*x + c)^(1/3)*b*(-d/b)^(2/3) +
sqrt(3)*(b*d*x + a*d))/(b*d*x + a*d)) + (b*x + a)*(-d/b)^(1/3)*log(((b*x + a)*(-d/b)^(2/3) - (b*x + a)^(2/3)*(
d*x + c)^(1/3)*(-d/b)^(1/3) + (b*x + a)^(1/3)*(d*x + c)^(2/3))/(b*x + a)) - 2*(b*x + a)*(-d/b)^(1/3)*log(((b*x
 + a)*(-d/b)^(1/3) + (b*x + a)^(2/3)*(d*x + c)^(1/3))/(b*x + a)) + 6*(b*x + a)^(2/3)*(d*x + c)^(1/3))/(b^2*x +
 a*b)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d x + c\right )}^{\frac {1}{3}}}{{\left (b x + a\right )}^{\frac {4}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(4/3),x, algorithm="giac")

[Out]

integrate((d*x + c)^(1/3)/(b*x + a)^(4/3), x)

________________________________________________________________________________________

maple [F]  time = 0.08, size = 0, normalized size = 0.00 \[ \int \frac {\left (d x +c \right )^{\frac {1}{3}}}{\left (b x +a \right )^{\frac {4}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/3)/(b*x+a)^(4/3),x)

[Out]

int((d*x+c)^(1/3)/(b*x+a)^(4/3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d x + c\right )}^{\frac {1}{3}}}{{\left (b x + a\right )}^{\frac {4}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/3)/(b*x+a)^(4/3),x, algorithm="maxima")

[Out]

integrate((d*x + c)^(1/3)/(b*x + a)^(4/3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c+d\,x\right )}^{1/3}}{{\left (a+b\,x\right )}^{4/3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(1/3)/(a + b*x)^(4/3),x)

[Out]

int((c + d*x)^(1/3)/(a + b*x)^(4/3), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt [3]{c + d x}}{\left (a + b x\right )^{\frac {4}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/3)/(b*x+a)**(4/3),x)

[Out]

Integral((c + d*x)**(1/3)/(a + b*x)**(4/3), x)

________________________________________________________________________________________